Computer Science

- Lecture notes
o CSAUTFALL2010
- Use by ONLY Group Members

Notation and Terminology

Network terminology as used in AMO.

An Undirected Graph or Undirected Network

A Directed Graph or Directed Network

$$
\text { Network } \mathbf{G}=(\mathbf{N}, \mathrm{A})
$$

$$
\text { Node set } N=\{1,2,3,4\}
$$

Arc Set

$$
A=\{(1,2),(1,3),(3,2),(3,4),(2,4)\}
$$

In an undirected graph, $(\mathbf{i}, \mathrm{j})=(\mathrm{j}, \mathrm{i})$

Path: Example: 5, 2, 3, 4.
(or 5, c, 2, b, 3, e, 4)
No node is repeated. Directions are ignored.•

Directed Path. Example: 1, 2, 5, 3, 4 (or 1, a, 2, c, 5, d, 3, e, 4)
No node is repeated.• Directions are important.-

Cycle (or circuit or loop)
1, 2, 3, 1. (or 1, a, 2, b, 3, e)
A path with 2 or more nodes, except that the first node is the last node.

Directions are ignored.•
Directed Cycle: $(1,2,3,4,1)$ or
1, a, 2, b, 3, c, 4, d, 1
No node is repeated.•
Directions are important.•

Walks

Walks are paths that can repeat nodes and arcs
Example of a directed walk: 1-2-3-5-4-2-3-5
A walk is closed if its first and last nodes are the same.
A closed walk is a cycle except that it can repeat nodes and arcs.

Network Notation

N : Node Set $=\{1,2,3,4,5,6,7\}$
A : Arc Set $=\{(1,2),(1,3),(2,3),(2,4),(3,6)$,
(4), (5), 7), (6, 7)\}

Tails and Head Nodes

- Tail Node : Node i is the tail node of arc (i, j)
- Head Node: Node j is the head node of $\operatorname{arc}(i, j)$
- Endpoints : Nodes i and j are endpoints of $\operatorname{arc}(\mathrm{i}, \mathrm{j})$
- Arc Adjacency List $A(i)=\{\{(i, j):(i, j) \in A\}$
- Observe that $\sum_{\mathrm{i} \in \mathrm{N}}|\mathbf{A}(\mathbf{i})|=\mathbf{m}$

Subgraph

Subgraph: $\mathrm{G}^{\prime}=\left(\mathrm{N}^{\prime}, \mathrm{A}^{\prime}\right)$ is a subgraph of $G=(N, A)$ if $N^{\prime} \subseteq N$ and $A^{\prime} \subseteq A$.

- Spanning Subgraph: G' = (N^{\prime}, A^{\prime}) is a spanning
subgraph of $G=(N, A)$ if N^{\prime}
 $=N$ and $A^{\prime} \subseteq A$.
- Acyclic Network: A network is acyclic if it contains no directed cycle

Network Connectivity

- Connected Graph: If every pair of nodes is connected by a path.
- Strongly Connected Graph: If every pair of nodes is connected by a directed path.
- Disconnected Graph: If some pair of nodes is not connected by a path. Maximally connected subgraphs of a disconnected graph are called components.

Cuts

- Cut: A cut is a set of arcs whose deletion disconnects the network into two components S and $\overline{\mathbf{S}}$ and no subset of it has this property. A cut is represented by $[\mathbf{S}, \overline{\mathbf{S}}$].

Trees

- Tree: A tree is a connected graph that contains no cycle.

- A tree on n nodes contains exactly ($n-1$) arcs.
- A tree has at least two leaf nodes.
- Every two nodes of a tree are connected by a unique path.

Spanning Trees

- Spanning Tree: A subgraph of a graph which is a tree and spans all nodes of the graph.

- Forest: A graph that contains no cycle is a forest.
- A forest on n nodes and k components has $\mathrm{n}-\mathrm{k}$ arcs.

Directed Out-Trees and In-Trees

- Directed-out-tree: A tree in which the unique path in the tree from node s to every other node is a directed path.

Directed-in-tree: A tree in which the unique path in the tree from any node to node s is a directed path.

Bipartite Graph

- Bipartite Graph: A graph $G=(N, A)$ is a bipartite graph if node set N can be partitioned into the sets N^{1} and N^{2} such that each arc (i, j) has either
(i) $i \in N^{1}$ and $j \in N^{2}$; or (ii) $i \in N^{2}$ and $j \in N^{1}$.

- A graph G is a bipartite graph if and only if sept,2eryery cycle in it has even number of arcs.

Network Representations

- Role of data structures is crucial in developing efficient algorithms. The manner in which networks are stored in a computer determines the performance of a network algorithm.
- We need to perform some of the following operations:
- Scan through the node list
- Scan through the arc list
- Determine all arcs emanating from a specific node i
- Determine all arcs entering a specific node i
- Determine all arcs emanating from or entering a specific node i

Common Network Representations

- Node-arc incidence matrix
- Node-node adjacency matrix
- Adjacency list
- Forward star representation
- Reverse star representation
- Forward and reverse star representations

Network representations

- We typically need to store two types of information:
- Network topology
- Nodes and arc structures
- Data
- Costs
- Capacities
- Supplies / demands

Incidence matrix representation

$\circ N \mathrm{n} \times \mathrm{m}$ matrix contains

- One row for each node of the network
- One column for each arc
- Column (i, j) has only two nonzero elements
o +1 in row i
- -1 in row j

Adjacency list

- The adjacency list representation stores the node adjacency list of each node a singly linked list.

Adjacency Lists

Forward Star Representation

- Similar to the adjacency list representation which stores the node adjacency list of each node
- It stores them in a single array
- We number the arcs in a specific order
- We store the tails, heads, costs, and capacities of the arcs in four arrays: tail, head, cost, and capacity

Forward Star Representation

- We maintain a pointer with each node i, denoted by Point (i),
- Point (i):= the smallest number arc in the arc list that emanates from node i
- Point (i):= Point (i+1)
- if node i has no outgoing arcs
- Point (1)=1
- Point $(n+1)=m+1$

Forward Star Representation

	tail	head	cost	capacity
1	1	2	25	30
2	1	3	35	50
3	2	4	15	40
4	3	2	45	10
5	4	3	15	30
6	4	5	45	60
7	5	3	25	20
8	5	4	35	50

Note: the FSR will store the outgoing arcs of node i at positions

- Point (i) to point (i+1) - 1

In the arc list

- If point (i) >point $(i+1)-1$ node i has no outgoing arc
- FSR provides us with an efficient way for determining the set of outgoing arcs of any node

Exercises due date Sunday 5/7/89

- Exercises
- 2.4, 2.8, 2.10
- 2.12 , 2.13, 2.16
- 2.19, 2.20, 2.23, 2.24
o 2.32, 2.33, 2.34, 2.35 2.36, 2.37, 2.38

